Pulsars – An Introduction

Tom Scragg

13/11/2024

DARA / HartRAO

Dr Tom Scragg

- DARA Technical Manager, University of Leeds
- Postdoctoral researcher at...
 - Jodrell Bank Centre for Astrophysics & Jodrell Bank Observatory
 - Writing programs in C++ and python
 - Looking at Terabytes of data to find new quirks or behaviours
 - Searching for Fast Radio Bursts
- Design / Build New Pulsar Timing Systems
 - GPU based data processing engines
 - Interfacing to new and old receivers and digitisers
 - Installed at JBO and GRAO Kuntunse Ghana
- The Study of Pulsars means 'timing' pulsars over many years
 - To find variations in the time-of arrival of a pulse ($\sim 10^{-15} / 10^{-18} s$)
 - Identify Physics involved
 - Discover how stars change and evolve
 - Use pulsars as probes of the Interstellar Medium, Relativity, Gravity, Galactic structure...

Jodrell Bank Centre for Astrophysics

JBCA

- Biggest Department in Europe ~
 215 people
- 28 Staff, 48 PDRA, 74 students / others

JBO

- 60 people, mostly engineering, technical and maintenance
- 6 Controllers
- 3 Research Telescopes on site
- e-MERLIN, 5 other telescopes remotely sited
- 2 'student' telescopes.

What are pulsars?

- They are <u>not</u> stars that pulse.
 - The fading heart of a supernovae a neutron star
 - A pulsar is a neutron star where the magnetic pole is not aligned with the axis of rotation which therefore generates a beam of radiation that periodically aligns with our line of sight

RAPulsarintroduction_HartRAO20241113 Image Credit: NASA/GSFC

Pulsars

- Remnants of SuperNova SNe
- Rotating Neutron Stars
- $M \sim 1.4 M_{\odot}$, $R \approx 10 km$
- Period = 0.0013 to 8.5 s
- Spin down $\dot{p} \sim 10^{-10}$ to 10^{-20} s s⁻¹
- B High Surface magnetic field
 - $\sim 10^8 \text{ to } 10^{14} \text{ Gauss}$
 - Earth 0.25 to 0.65 G
- Mainly radio sources
- Emission typically in a narrow beam
- Clock-like stability

Pulsar 'Toy' Model

@ Mark A. Garlick / space-art.co.uk Magnetic axis **Axis of Rotation Emission beam Magnetic field lines**

Lighthouse 'Toy' Model

Image credit: ASTRON

P vs P Diagram

Two Main Populations

Magnetic fields 108G

DARAPulsarIntroduction_HartRAO20241113

Image Credit:

JBCA Internal Plot

Where do we find Pulsars?

Pulse Shapes at Different Frequencies

Physics with Pulsars

Time of arrival at different frequencies

Frequency dispersion along the line of sight gives us information on the neutral hydrogen / electron number density of the ISM

By looking at the pulse profile

Changes in flux or phase or shape, we can derive structure in the emitting regions

Pulsar timing

Spin down rate, RRATs & Nulling emission mode, Glitches (neutron star interiors)

Pulsars in Binary Systems

Interactions between companions (Recycled pulsars / MSPs, Redbacks & Black Widows)

Post Keplerian Orbital mechanics, tests of General Relativity, Constrain theories on gravity waves

Timing of Pulsars

Regular monitoring of the rotation of a neutron star by noting the time of arrival of radio pulses.

Image Credit: Adapted from Pulsar Astronomy

P is the period between peaks (or a prominent feature on the pulse)

Increasing the accuracy

Pick a point on the pulse and measure the time delay to the next occurrence

 Simple case: 1 second period, 10% duty cycle, assume our accuracy of the pulse peak is 10% = 0.1s (100ms).

Image Credit: Scott Ransom

 Measure over n pulse periods and we can reduce the error in our estimation of the period by 1/n

PSR J1737+0747 (a millisecond pulsar)

 $P = 4.570 \ 136 \ 529 \ 159 \ 926 \ ms \pm 0.1 \ x \ 10^{-8} ns$

Pulse Profile

Image credit: ASTRON

Supernova Remnant

Crab Nebula

In the constellation Taurus

- Supernova in 1054 AD
- Due to the neutron star 'Proper Motion' over the last 1,000 years The pulsar is not in the centre of the nebula

Monitored by Jodrell Bank

- For ~12 hours a day
- For 30+ years

Image Credits: X-ray: NASA/CXC/SAO/F.Seward; Optical: NASA/ESA/ASU/J.Hester & A.Loll; Infrared: NASA/JPL-Caltech/Univ. Minn./R.Gehr

Crab Pulsar PSR B0531+21

Vela Pulse TrainBrightest pulsar in the southern sky

© Jodrell Bank Centre for Astrophysics pulsar group

Pulse Profiles

Image credits: JBCA

PULSE EMISSIONS OVER TIME

1600 pulse signals combined

Profile is constant per pulsar Some rotations have no emissions

PSR B0329+54

Brightest Pulsar in the northern sky

Image credit: JBCA

© Jodrell Bank Centre for Astrophysics pulsar group

Timing and Residuals

- The pulse Time-of-Arrival is compared with prediction from the timing model.
- The timing model allows us to calculate the expected arrival of
 - Pulse number 1,000,000 (day 11)
 - Pulse number 10,000,000 (day 115)
 - Pulse number 1,000,000,000 (day 11,575 in year 31)
- From that we can determine the error in the calculated ToA
 - 'Residual error'
- Iterative process starting with a few closely grouped observations
 - Extend the time duration and precision as more data is available
- Look out for
 - Phase coherence
 - Geometric and relativistic effects
 - Glitches

DARAPulsarIntroduction_HartRAO20241113 25

Phase Coherence

- Simply that we have a timing solution that is accurate enough that the accumulated uncertainties do not exceed one pulse period.
- Start with Spin period and Pulse reference phase (template)
 - Spin frequency derivative (P)
 - Position
- Precision improves with data span (time) and frequency of observation.
- Pulsars in Binary Systems have another set of orbital parameters to characterise

Glitches

A glitch is a sudden step change in spin frequency

- The pulsar spins faster
- The slow down rate (P) increases and then decays back to the original value.

Glitch in PSRJ1757-2421

- at ~ MJD 55700 (May 16 27 2011)
- Fractional increase of $\Delta v_q / v \sim 7.8 \times 10^{-6}$
- $-v = 4.27159265655(4) s^{-1}$
- $-\Delta v_g = 4.2715730980(8) s^{-1}$

Glitch in PSR J1757-2421

The top panel shows the spinfrequency residuals relative to the pre-glitch Spindown solution;

The bottom panel shows the variations of P, and the horizontal dashes indicate the average pre-glitch level.

The glitch epoch is indicated by a red arrow.

Changes over years

Changes in Pulsar Spin down rates over ~30 years of observations at Jodrell Bank

PULSAR TIMING SYSTEMS

Evolution of pulsar systems and compute power

Three New Pulsar Timing Systems

Ghana - Hebe

- New PTS based on a Dual GPU Server
- Process 800MBytes per second in Real Time

E-MERLIN

- 5 x 25m + 1 x 32 m Dishes
- ~ ½ the sensitivity of the Lovell
- Store and Process system on the three node LOFT-e cluster

Hebe 2

- Connect to the Lovell or Mark II
- Real Time Pulsar Processing

Hebe 2 at Jodrell Bank

Cool Science Stuff

Pulsars at 5 & 6.7 GHz

- < 50 Pulsar recorded at 5-7GHz</p>
- Emission mechanisms at these frequencies
- Profile changes with frequency

Monitor pulsars with e-MERLIN

- Looking at faint Glitching pulsars
- Combine 6 telescopes for sensitivity and RFI immunity

Change in Spin-down with emission mode

- Rotation powered pulsars slow down as they radiate energy
- Measure the change in spin-down and correlate with pulse profile changes

Residuals

Timing Residuals from PSR B1133+16

$$t_{SSB} = t_{topo} + t_{corr} + \Delta_{R} + \Delta_{S_o} + \Delta_{E_o}$$

a) Perfect fit – random distribution

c) Position error – sinusoidal error with a period of 1 year Romer delay

b) Parabolic increase - P underestimated Timing model incorrect

d) Position not corrected for proper motion – Romer delay error

Corrections to ToA

$$t_{SSB} = t_{topo} + t_{corr} + \Delta_{R_{\odot}} + \Delta_{S_{\odot}} + \Delta_{E_{\odot}}$$

~1.6ms ΔE_⊙ Einstein Delay

Correction	Typical value/range
Observatory clock to TT	1 μs
Hydrostatic tropospheric delay	10 ns
Zenith wet delay	1.5 ns
IAU precession/nutation	\sim 5 ns
Polar motion	60 ns
ΔUT1	1μs
Einstein delay	1.6 ms
Roemer delay	500 s
Shapiro delay due to Sun	112 μs
Shapiro delay due to Venus	0.5 ns
Shapiro delay due to Jupiter	180 ns
Shapiro delay due to Saturn	58 ns
Shapiro delay due to Uranus	10 ns
Shapiro delay due to Neptune	12 ns
Second-order Solar Shapiro delay	9 ns
Interplanetary medium dispersion delay	$100\mathrm{ns}^b$
ISM dispersion delay	\sim 1 s ^b

- Earth's Rotation
- Determine size of the Earth by changes in the pulse delay
- Determine the position of telescopes with pulsars to within
 - ~300m if pulsar error is 1 in 10⁶
 - ~0.3m if pulsar error is 1 in 10⁹
 - ~0.3mm if pulsar error is 1 in 10^{12}

- Earth's Orbit
- Determine size and shape of the Earth's orbit by changes in the pulse delay
- Determine the relative change in position of telescopes to within
 - ~300m if pulsar error is 1 in 10⁶
 - ~0.3m if pulsar error is 1 in 10⁹
 - ~0.3mm if pulsar error is 1 in 10^{12}

Bending of light by mass

- Determine the mass of bodies in the solar system
 - By the delay caused by distortions in the signal path

Bending of light by mass

If we know the delay we can work out the mass of:

Jovian system 9.5479189(3) x 10⁻⁶

 M_{\odot}

- Ceres 4.7(4) x 10⁻¹⁰
- Vesta 1.3026846(9) x 10^{-10}
- Six pulsars used with a typical timing error of $0.2 < t < 2 \mu seconds$

R.N.Caballero et. al 2018

Relativity

- Delay Caused by
 - Earth based clocks run slower in a more intense gravitational field
 - Time-dilation
 - ~ 1.6 ms

AKAPUISATINTroduction_HartKAU2U241113

ISM - Dispersion

- The ISM delays the radio signal as it passes through.
 - Higher frequencies are delayed less than lower frequencies
 - We can analyse this to give an idea of the average electron density along our line of sight to the pulsar
 - Hence the presence of dust and gas

Image Credit: Handbook of Pulsar Astronomy Lorimer & Kramer

ISM Electron density distribution models

NE2001 Cordes and Lazio (2002a)

- Pulsars detected at ~430MHz are black dots, at ~1.4GHz yellow dots
- Darker grey corresponds to higher electron number density

YMW16 (2016)

/www.atnf.csiro.au/research/pulsar/ymw16/

- YMW16, Yao, Manchester and Wang Astrophysical Journal, vol. 835, eid 29 (2017) (via arXiv (1610.09448v2).
- YMW16 is the first electron-density model to estimate extragalactic pulsar and FRB distances.

NEUTRON STAR BEHAVIOUR

Glitches

- A glitch is a sudden step change in spin frequency
 - The pulsar spins faster
 - The slow down rate (P) increases and then decays back towards it's original value.
- Glitch in PSRJ1757-2421
 - at ~ MJD 55700 (May 16 − 27 2011)
 - Fractional increase of $\Delta v_g / v \sim 7.8 \times 10^{-6}$
 - -v = 4.27159265655(4) Hz
 - $-\Delta v_g = 4.2715730980(8)$ Hz

Glitch in PSR J1757-2421

The top panel shows the spinfrequency residuals relative to the pre-glitch Spindown solution;

The bottom panel shows the variations of P, and the horizontal dashes indicate the average pre-glitch level.

PULSARS IN BINARY SYSTEMS

Black Widows and Redbacks

Spiders

- Fast millisecond pulsars (≤ 5ms)
- Short, circular orbits (75m 15 hours)
- Large spin-down luminosity (Edot 10³⁴ Ergs/s)
- Radio Eclipses (0-70% of the orbit)
- Optical flux and/or colour modulation

Black Widows

- First PSR B1957+20 (1988)
- Very low companion mass ($^{\circ}$ 0.02 M_☉)
- **–** ~25

Redbacks

- First PSR J1023+0038 (2009)
- Low Companion Mass (\sim 0.2 M_{\odot})
- Some show state transitions'MSP <-> LMXB'
- **~25**

Redback

Redback Binary Systems

Image credit: ASTRON

Black Widow Pulsar

Image credit: NASA

Thank you

www.Jodcast.net

Pulsar-Hunters.org

www.zooniverse.org/projects/zooniverse/pulsar-hunters

http://www.jodrellbank.manchester.ac.uk/

A new pulsar timing system (PTS) for the GRAO

Ghana Radio Astronomy Observatory

- Converted telecommunication dish
- Located 5° north of equator (just northwest of Accra)

32m main dish

- Ambient temperature receiver
- 150MHz @ 5GHz
- 300MHz @ 6.7GHz
- Three other dishes on site

Initial Science

- Methanol Masers at 6.7GHz
- Pulsar Observations and Timing
- VLBI Imaging

Pulsar Timing System

- Hybrid CPU and GPU cluster
- Low cost COTS hardware

JBCA Notes

- Slowest Pulsar, J2252-37, 12.1 seconds (Vincent)
- New slowest pulsar J0250+5854, 22.5 Seconds (Chia Min)
- Studying the Solar System with the International Pulsar Timing Array. October 2018 (Caballeros et.al 2018)