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1. Introduction

1.1 Theory

1.1.1 Radio waves



Radio waves are electromagnetic signals having wavelengths greater than a centimetre
(see Fig 1. below). For example, commercial FM radio operates in the frequency range
from 88 to 108 MHz, corresponding to a wavelength of about 3 metres. Cellphones
operate at a frequency  of about 900 MHz, i.e. a wavelength λ of 33 cm.

The microwave band is the short wavelength part of the radio band and covers 1 to 30
cm wavelength. Microwave ovens operate at 12 cm (2.4 GHz). DSTV satellites transmit at
2.5 cm (12 GHz). DSTV dishes have a smooth solid surface in order to reflect incoming
radio waves with high efficiency. Satellite dishes working at the longer wavelength of 8
cm (3.8 GHz) can get away with a rougher mesh surface and still have acceptable
efficiency.
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1.1..2 Radio Telescope Antennas

A “classic” radio telescope for use in the microwave band has a circular parabolic
reflector with a feed horn at the focus to collect the incoming microwaves and pass them
to transistor amplifiers in the receiver. A DSTV satellite dish also works in this way. It can
be used as a mini-radio telescope by replacing the DSTV decoder with a radiometer
for measuring the signal strength.

To understand how a reflector antenna responds to radiation coming from different
angles, consider what happens when a plane wave of wavelength λ arrives at a circular
aperture of diameter D (Fig. 2). Constructive and destructive interference produces a
circularly symmetric diffraction pattern, with a central maximum and concentric rings of
decreasing strength (Fig. 3). This same pattern describes the response of a circular
antenna to plane waves coming from different angles, and it is then called an antenna
beam pattern.



Figure2:Afocusinglensorreflectorwithacircular
aperture.
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Figure3:
circularfocusing

R
e
la
ti
v
e
G
a
in
-
d
e
c
ib
e
ls
c
a
le

-5

-10

-15

-20

-25

-30
-4.0

Figure5:Beam
callyrealizable
scaletoshow

An “ideal” antenna would produce a beam that captures 100% of the incoming energy in
the main beam and would have no sidelobes. This antenna would have a “main beam
efficiency”  of 1.0. It is not possible to actually achieve this, and  usually lies
between 0.6 and 0.8.

Figs. 4 and 5 show an ideal and an actual beam pattern in cross-section on linear and
logarithmic scales. The “ideal” pattern has been modelled here with a parabolic shape,

while the mathematical form of the real pattern is a sinc  function. This

describes the diffraction pattern where nothing obstructs the path of the waves, i.e. it has
an “unblocked aperture”, and is uniformly illuminated. The first minimum or null in the
pattern occurs at a radius of about 1.2  radians, so the beamwidth to first nulls is

The beamwidth at the half-power points (HPBW), also called the Full Width at Half
Maximum (FWHM), is about half this, as shown in figs. 4 and 5.
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𝐵𝑊𝐹𝑁 ∼ 2.4 [𝑟𝑎𝑑𝑖𝑎𝑛𝑠]𝜆
𝐷

(1)

𝐻𝑃𝐵𝑊 = 𝐹𝑊𝐻𝑀 ∼ 𝐵𝑊𝐹𝑁/2 = 1.2 [𝑟𝑎𝑑𝑖𝑎𝑛𝑠]𝜆
𝐷

(2)

1.1.3 Brightness Temperature and Antenna Temperature



Fig. 6 shows the brightness as a function of frequency for several black body radiators
modelled as having equal size but different temperatures. The frequencies of satellite TV
transmission and visible light are marked. Clearly, hotter objects produce more radiation
than cooler ones, and the brightness maximum occurs at a higher frequency. The
wavelength or frequency at which the intensity peaks is given by the well-known Wien
displacement law.
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Blackbodyradiationfromsolidobjectsofthesameangularsize,atdifferenttemperaturesFrom Fig. 6 we can see that for all objects with temperatures more than a few degrees
above absolute zero, the brightness peak occurs well above the operating range of radio
telescopes. Hence radio telescopes work in the range where h  <<  , so the Rayleigh-
Jeans law applies and the brightness B - and hence the power measured by a radio
telescope - is proportional to the temperature T of the emitting source:

where  = Boltzmann’s constant = 1.38 x 10  [ ].

𝜈 𝑘𝑇

𝐵 = [𝑊 𝐻 𝑠 ]2𝑘𝑇
𝜆2

𝑚−2 𝑧−1 𝑟−1 (3)

𝑘 −23 𝐽𝐾−1



The apparent temperature of an emitting source at a given frequency is a property of the
object emitting the radio waves. This is called its “ ”, .

For some astronomical objects the brightness temperature that is measured using a
radio telescope is meaningful as a physical temperature, for example when observing a
planet or moon. For other objects it may not be, depending on the mechanism that
produced the radio emission.

By pointing the antenna at objects of known temperature that completely fill the
beam, we can calibrate the output signal in units of absolute temperature (Kelvins).
So one can think of a radio telescope as a remote-sensing thermometer.

The “ ”  of a source is the increase in temperature (receiver
output) measured when the antenna is pointed at a radio-emitting source. It will be less
than brightness temperature of the source if the source does not fill the whole beam of
the telescope. Note that “antenna temperature” has nothing to do with the physical
temperature of the antenna.

To obtain the brightness temperature  of the emitting source from its measured
antenna temperature , we have to measure the angular size of the source and of
the telescope beam. The ratio of the angular size (solid angle) of the source to the
angular size of the beam gives the fraction of the beam that is filled by the source.
This will be useful to remember during the experiment later on.

𝐛𝐫𝐢𝐠𝐡𝐭𝐧𝐞𝐬𝐬 𝐭𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞 𝑇𝐵

𝐚𝐧𝐭𝐞𝐧𝐧𝐚 𝐭𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞 𝑇𝐴

𝑇𝐵
𝑇𝐴
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Figure7:Comparisonofphysicalradiusrandangularradius0.Indiagram
physicalradii:72>r1,butthesameangularradiasseenbytelescope
MoonandSunasseenfromEarth.Bycontrast,indiagramB,r4>

1.1.4 Angular Sizes and the Sun’s Brightness Temperature

The difference between physical diameter and angular diameter is shown in Fig. 7. For
example, the Sun has a physical diameter of 1.4 million km, while the Moon has a
diameter of 3500 km. Yet, as seen from the Earth, the Sun and the Moon appear to be
the same size, i.e. they have the same angular diameter. How can this be? The Sun is
400 times bigger than the Moon, but it is also 400 times further away. As the projection of
the antenna beam onto the sky is two-dimensional, we shall need to find the angular area
that it covers. Angular area is called a “solid angle” and the units are radians , or
steradians (sr). An object with an angular radius θ radians subtends a solid angle

2



For small ,

Ω = 2𝜋(1 − 𝑐𝑜𝑠𝜃) [𝑠𝑟] (4)

𝜃

Ω = 𝜋 [𝑠𝑟]𝜃2 (5)

We can use this equation to calculate the solid angle of the Sun as seen from the Earth,
.

The beam solid angle  of the antenna can be obtained from the half-power
beamwidth (HPBW) - in units of radians - by assuming the main lobe of the beam has a
Gaussian shape:

For small ,

Ω𝑠

Ω𝐴

∼ 1.333(𝐻𝑃𝐵𝑊 [𝑠𝑟]Ω𝐴 )2 (6)

𝜃

= [𝐾]𝑇𝐵
Ω𝐴𝑇𝐴
Ω𝑠𝜖𝑚

(7)

1.2. Detecting Radio Emission from Space

When the telescope looks at a radio source in the sky, the receiver output is the sum of
the radio waves received from several different sources:

Behind the radio source whose brightness we want to measure is the cosmic
microwave background (CMB) coming from every direction in space. This is the
radiation emitted as the first atoms formed, 380 000 years after the Big Bang. The
black body temperature of the CMB Tcmb has now decreased to 2.7 Kelvins, as the
expansion of the Universe has stretched out the waves by a factor of 1000. The
CMB produces a brightness temperature  of 2.7 K at 1.4 or 4 GHz, reducing
to 2.5 K at 12 GHz.

𝑇𝐵𝑐𝑚𝑏 ∼

The emission from the radio source we want to measure, which produces the
antenna temperature .𝑇𝐴

Radiation from the dry atmosphere  and from the water vapour in the atmosphere
. The dry air adds about 1K, and at 12 GHz water vapour adds 1 - 2 K,

depending on the humidity.

𝑇𝑎𝑡
𝑇𝑤𝑣

The radiation the feed receives through the antenna sidelobes from the (warm - 290
K) ground or nearby buildings beyond the edge of the antenna, of brightness
temperature . With the antenna pointing straight up at zenith this could add 5 - 15
K; 10 K is a reasonable number to use. It increases when pointing close to the
horizon.

𝑇𝑔



The amplifiers in the receiver generate their own electronic noise and so produce a
receiver noise temperature .𝑇𝑅

The sum of these parts is called the “system temperature” . Summing from the most
distant noise contributor to the nearest we have:

𝑇𝑠𝑦𝑠

= + + + + + [𝐾]𝑇𝑠𝑦𝑠 𝑇𝐵𝑐𝑚𝑏 𝑇𝐴 𝑇𝑎𝑡 𝑇𝑤𝑣 𝑇𝑔 𝑇𝑅 (8)

2. The Experiment

You are now going to use the principles discussed in the previous section to calculate the
brightness temperature of the Sun. But before you start, we need to setup our
experiment. Here's what we are going to need:

2.1 Equipment

2.1.1. A standard small Ku-band (12GHz) satellite dish.

The main parts of a simple radio telescope comprising a satellite dish and radiometer are
shown in the figure below.

The dish output is fed to a radiometer. A “radiometer” means a “radio-meter” – i.e. a
device that measures the strength of the radio signal coming from the receiver on the
dish. Since the incoming radio waves from natural emitters are weak and noise-like. If the
output of the detector is connected to a loudspeaker, the signal sounds like a hiss, as
one hears if a radio is tuned off-station. The internal noise produced in the amplifiers is
generally larger than the signal from natural radio sources.



LNBinputfrequency:10.70-12.75GHz
LOfrequency:9.75GHz
LNBoutputfrequency:0.95-3GHz

*Radiometer:measuresthestrengthoftheradiosignalcoming
receiveronthedish.Buildusingsparesfromthe26m.

*Suppliesthe15VDCneededbyamplifieronthedish.
*Usea"square-law"detector=>

outputvoltageproportionaltoinputvoltage.

*Outputvoltageisdisplayedonameter(arbitraryscale).
*Outputvoltageisfedtoaloudspeaker(audiooutput).

*Hissofvaryinglevelsofintensity=>hissis"whitenoise"radio
whitelightweseewithoureyes.

2.1.2. Apparatus for Measuring the Diameter of the Sun

You will need:

two pieces of card or paper,
a pencil,
a sharp knife,
a ruler and
a 2 metre tape measure.

2.1.3. Apparatus for Measuring the Antenna Beamwidth

You will need:

pen and
notepad or paper.
(Optionally): Apparatus required is a tripod or mount on which the satellite dish can
be locked in position, a timer (e.g. watch on which seconds are displayed). We wont
be using this for our experiment.



2.2 Experimental procedure
The temperature brightness  is described in eq. (7) as

where  is the beam solid angle,  is the solid angle of the Sun as seen from Earth,
 is the main beam efficiency and  is the emission from the radio source we want to

measure. In order to measure  we need to establish a conversion factor or "Calibrate
our telescope" so that we can be able to express our detected radio emission it in terms
of temperature in Kelvins [K].

𝑇𝐵

= [𝐾]𝑇𝐵
Ω𝐴𝑇𝐴
Ω𝑠𝜖𝑚

Ω𝐴 Ω𝑠
𝜖𝑚 𝑇𝐴

𝑇𝐴

2.2.1 Calibrating the Radio Telescope

When a radio telescope detects radio emission from a celestial object, the dish produces
an output voltage proportional to the object's radio power (a "square-law" detector) plus
its own internal receiver noise. This voltage is displayed on a meter with an arbitrary
scale. To get the temperature brightness of the object, we need a way to establish a
scale of Kelvins per radiometer output unit. To establish a scale of Kelvins per radiometer
output unit, we use a technique that leverages the sky and ground as reference points.

Determining the Scaling Factor

We can determine this scaling factor by using the sky as a "cold load" and the ground as
a "hot load."

Cold Load (Sky): By pointing the telescope at the zenith, we effectively observe a
"cold load" with a temperature  10 K. This temperature accounts for the
Cosmic Microwave Background, atmospheric contributions, and ground radiation.
Hot Load (Ground): Aiming the telescope at the ground provides a "hot load" with a
temperature  300K on a warm day.

Let:

:Meter reading for the sky
: Meter reading for the ground
: Receiver noise temperature

: Effective sky temperature
: Ground temperature

c: Constant of proportionality

if  and  are the meter readings for the sky and ground, respectively. The relationship
between temperature and voltage can be expressed as:

where 

∼𝑇𝑠𝑘𝑦

∼𝑇𝑔

𝑉1
𝑉2
𝑇𝑅
𝑇𝑠𝑘𝑦
𝑇𝑔

𝑉1 𝑉2

+ = 𝑐 [𝐾]𝑇𝑅 𝑇𝑠𝑘𝑦 𝑉1 (9)

= + + + ∼ 10𝐾.𝑇𝑠𝑘𝑦 𝑇𝐵𝑐𝑚𝑏 𝑇𝑎𝑡 𝑇𝑤𝑣 𝑇𝑔

+ = 𝑐 [𝐾]𝑇𝑅 𝑇𝑔 𝑉2 (10)



By solving these equations simultaneously, we can determine the value of  and
establish a calibrated temperature scale for the radiometer.

HartRAO Satellite dish Radiometer

On the HartRAO satellite dish radiometer, typical meter readings are:

10: Aimed at the sky ( )

30: Aimed at the ground ( )

24: Aimed at the Sun ( ), you will need this for the next calculation

By using these readings and the known temperatures of the sky and ground, we can
calculate the scaling factor c and subsequently determine the temperature of the Sun (or
any other celestial object) based on its corresponding meter reading.

𝑐

𝑉1

𝑉2

𝑉3

>>> Solution for Determining the Scaling Factor

Step 1: Establish the equations:

As given in the experiment notes, we have two equations:

Step 2: Solve for the scaling factor, c:

To find the scaling factor, we can subtract equation 9 from equation 10:

This simplifies to:

Therefore, the scaling factor, c, is:

Step 3: Calculate the scaling factor using given values:

+ = 𝑐 [𝐾]𝑇𝑅 𝑇𝑠𝑘𝑦 𝑉1 (9)

+ = 𝑐 [𝐾]𝑇𝑅 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 𝑉2 (10)

( + ) − ( + ) = 𝑐 − 𝑐𝑇𝑅 𝑇𝑔 𝑇𝑅 𝑇𝑠𝑘𝑦 𝑉2 𝑉1

( − ) = 𝑐( − )𝑇𝑔 𝑇𝑠𝑘𝑦 𝑉2 𝑉1

𝑐 = −𝑇𝑔 𝑇𝑠𝑘𝑦
−𝑉2 𝑉1

𝑐 = = = 14.5 𝐾/𝑢𝑛𝑖𝑡300𝐾−10𝐾
30−10

290𝐾
20



In [1]:

Now that we know  we can determine the noise contribution from 

substituting for  in equation (9)

𝑐 𝑇𝑅

𝑐

14.5(10) = + 10𝑇𝑅

= 145 − 10𝑇𝑅

= 135 [𝐾]𝑇𝑅

In [2]:

Out[1]: 'The scaling factor is 14.5 kelvins per arbitrary unit'

Out[2]: 'The noise temperature of the reciever is 135 K'

Tg=300
Tsky=10
V1=10
V2=30

c= (Tg-Tsky)/(V2-V1)

f'The scaling factor is {c} kelvins per arbitrary unit'

TR = int((c*V1)-Tsky)

f'The noise temperature of the reciever is {TR} K'

1
2
3
4
5
6
7
8

1
2
3



2.2.2 Measure the Antenna Temperature from the Sun

We need to aim the telescope at the Sun. With an offset-fed paraboloid this can be a litle
tricky. Hold the dish horizontal. then turn the dish horizontally so the shadow of the feed
arm falls across the centre of the dish, demonstarated her by Mike in the image below.

Then rotate the dish in elevation so the shadow of the feed arm on the dish gets shorter.
The Sun comes into the beam just after the shadow leaves the edge of the dish. Adjust
the direction gently up and down and sideways to maximise the signal from the Sun; the
signal should roughly double. Once the telescope is accurately pointed at the Sun,
record the new meter reading, . This reading corresponds to the combined
temperature of the receiver, sky, and Sun, and is expressed as:

Calculating the Sun's Antenna Temperature:

Since the scaling factor, , and the receiver temperature, , are known from the
calibration process, and we have a reasonable estimate of the sky temperature, , we
can use equation 11 to directly calculate the antenna temperature of the Sun, .

𝑉3

𝑐 = + +𝑉3 𝑇𝑅 𝑇𝑠𝑘𝑦 𝑇𝐴𝑠𝑢𝑛 (11)

𝑐 𝑇𝑅
𝑇𝑠𝑘𝑦
𝑇𝐴𝑠𝑢𝑛

= 𝑐 − −𝑇𝐴𝑠𝑢𝑛 𝑉3 𝑇𝑅 𝑇𝑠𝑘𝑦

>>> Solution for Measuring the Antenna Temperature from the Sun

 = 203 K

= (14.5𝐾/𝑢𝑛𝑖𝑡)(24𝑢𝑛𝑖𝑡𝑠) − 135𝐾 − 10𝐾𝑇𝐴𝑠𝑢𝑛 (12)

= 348 − 145𝐾𝑇𝐴𝑠𝑢𝑛

𝑇𝐴𝑠𝑢𝑛



In [3]:

But the Sun is much hotter than this! To understand why this is so, and to work out the
real temperature of the Sun, we must consider the telescope's field of view. We have to
figure out how much of the sky the dish “sees” (or more technically, the beam solid
angle) at a given time.

2.2.3 Measure the Angular Diameter of the telescope beam

Out[3]: 'The antenna temperature of the sun is 203 K'

V3=24

TAsun = int(c*V3) - TR - Tsky

f'The antenna temperature of the sun is {TAsun} K'

1
2
3
4
5



1. Angular diameter or angular resolution of The telescope beam

A radio telescope, like the satellite dish you're using, is sensitive to radio waves
originating from a specific region of the sky. This region is known as the antenna's
"beam."

Understanding Beamwidth

What is the diameter of this beam ?

As the radio source moves away from the middle of the beam, the angle of the waves
hitting the dish changes. When all the waves coming from each part of the dish are in
phase, we get the strongest signal, when the emitter is in the centre of the beam. Moving
away from the centre, the waves from different parts of the dish start to become out of
phase with each other, causing destructive interference. The telescope sensitivity falls to
a minimum when the incoming wave is tilted at an angle so that there is a phase
difference of approximately one wavelength across the diameter of the dish. This
minimum is called the “first null” in the antenna beam pattern. We normally use the points
where the response of the antenna has fallen to half that in the centre of the beam
defined as the “half-power beamwidth” ( ) or angular resolution.

 ~ wavelength / diameter of the dish, in units of radians (1 radian = 57.3 degrees).

For a circular aperture, like our dish, the angular resolution, , can be estimated
using the Rayleigh criterion given in equation (2).

Calculate the HPBW of the telescope beam.

.

HartRAO Satellite dish parameters

dish_diameter = 50 # cm, satellite dish diameter

wavLen = 2.5 # cm, observing wavelength

𝜃𝐻𝑃𝐵𝑊

𝜃𝐻𝑃𝐵𝑊

𝜃𝐻𝑃𝐵𝑊

𝐅𝐨𝐫 𝐜𝐨𝐦𝐩𝐚𝐫𝐢𝐬𝐨𝐧, 𝐚𝐥𝐬𝐨 𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞 𝐭𝐡𝐞 𝐫𝐞𝐬𝐨𝐥𝐯𝐢𝐧𝐠 𝐩𝐨𝐰𝐞𝐫 𝐨𝐟 𝐲𝐨𝐮𝐫 𝐞𝐲𝐞 (2 𝐦𝐦 𝐩𝐮𝐩𝐢𝐥) 𝐚𝐧𝐝 𝐨𝐟 𝐚 20𝐜𝐦 𝐨𝐩𝐭𝐢𝐜𝐚𝐥 𝐭𝐞𝐥𝐞𝐬𝐜𝐨𝐩𝐞, 𝐮𝐬𝐢𝐧𝐠
 𝐚 𝐰𝐚𝐯𝐞𝐥𝐞𝐧𝐠𝐭𝐡 𝐨𝐟 500 𝐧𝐦)

>>> Solution for measuring the Angular diameter or angular resolution of The
telescope beam

1. Calculation of the 

= 3.4 degrees (approx)

𝜃𝐻𝑃𝐵𝑊

= (1.2)(𝑜𝑏𝑠_𝑓𝑟𝑒𝑞)/𝑑𝑖𝑠ℎ_𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝜃𝐻𝑃𝐵𝑊

= (1.2)(2.5)/50𝜃𝐻𝑃𝐵𝑊

= 0.060 [𝑟𝑎𝑑𝑖𝑎𝑛𝑠]𝜃𝐻𝑃𝐵𝑊



In [4]:

This is the beam of the telescope. We now need to figure out what is the beam solid
angle  or the angle subtended in the sky by the telescope beam. This is a crucial
parameter in radio astronomy as it determines the amount of celestial radiation that the
telescope can collect or more technically a measure of the telescope's field of view on
the sky. A larger beam solid angle means the telescope collects radiation from a larger
area of the sky, while a smaller beam solid angle provides a more focused view.

Calculate the antenna beam solid angle 

Ω𝐴

Ω𝐴

>>> Solution for measuring the solid angle or area of The telescope beam

1. Calculation of the solid angle 

The beam area (solid angle) is agiven in eqn. (6)

= 13.39

Ω𝐴

= 1.133(𝑡ℎ𝑒𝑡𝑎_ℎ𝑝𝑏𝑤 [𝑠𝑟]Ω𝐴 )2

= 1.133(3.44 [𝑠𝑟]Ω𝐴 )2

In [5]:

2.2.4 Measure the Angular diameter of the Sun

To measure the angular diameter of the Sun, we will use the pinhole projection
experiment. Assuming that our target, the Sun, is much smaller or can fit within the beam
of our antenna, we now want to find out what its angular diameter is.

Put simply, we need to know how many times the Sun would fit into the beam of the
telescope.

Out[4]: 'The hpbw or angular diameter of the antenna beam is 0.06 radians 
or ~3.44 degrees'

Out[5]: 'The solid angle or area of the antenna beam is 13.39 square degre
es'

import numpy as np

dish_diameter = 50 
wavLen = 2.5
theta_hpwb_rad = (1.2*wavLen)/dish_diameter
theta_hpwb = np.rad2deg(theta_hpwb_rad) # convert radians to degrees

f'The hpbw or angular diameter of the antenna beam is {theta_hpwb_rad:.2f} radians or ~{theta_hpwb:.2f} degrees'

import math 

omega_a_deg = 1.133 * (theta_hpwb)**2

f'The solid angle or area of the antenna beam is {omega_a_deg:.2f} square degrees'
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1. Estimating the temperature of the Sun using the beam size

Use pinhole projection to measure the angular diameter of the Sun. On one piece of card
use a ruler and pencil to mark three equilateral triangles several cm apart, with sides of
about two, three and four millimetres. Cut out the triangles using the sharp knife and
ruler. The card with the holes is used to project images of the Sun onto the second card
(Fig above and below). The two cards need to be separated by a distance D, measured
by the tape measure.



ProjectingtheSunthrough

If the dish can be pointed accurately using a tripod, the beamwidth could actually
be measured, by scanning across the Sun or letting it drift through the beam. This
is one of the methods used to observe radio sources by the HartRAO 26m
telescope.

HartRAO Satellite dish parameters

D = 2000: mm, length of distance between the 2 papers or cards (from 2, above)
measured with a tape measure

d = 20: mm, The linear diameter of the projected Sun measured with the ruler.

Diameterof
Sun

DistancetoSun

1.Standupandholdthestringor
tapemeasureinonehand.
Stretchyourarmstraightup,let
thestringtouchtheground.Tie
aknotinthestringwhereit
touchestheground.Usethe
rulertomeasurethelengthof
thestringuptotheknot.

2.Recordthelength:
mm

3.Makeaholeinthecentreofone
ofthepiecesofpaper.Thehole
shouldbebetween2and4mm
indiameter.

4.Stickthesecondpieceofpaper
totheoutsidecoverofa
hardcoverbook.Thiswillallow



hardcoverbook.Thiswillallow
thepapertostandonit'sownon
theground.

5.Setthedistancebetweenthe
twopiecesofpaperasthe
lengthofstringtotheknot.

6.LettheSunshinethroughthe
pinholeontothesecondsheet.

7.DrawacirclearoundtheSun's
imageonthesecondsheet.Use
therulertomeasurethe
diameteroftheSun'simage:

mm.

>>> Solution for measuring the Angular diameter or angular resolution of The
telescope beam

The angular diameter of the Sun is d/D radians:

or

= [𝑟𝑎𝑑𝑖𝑎𝑛𝑠]𝜃𝑠𝑢𝑛
𝑑
𝐷

= [𝑟𝑎𝑑𝑖𝑎𝑛𝑠]𝜃𝑠𝑢𝑛
20
200

= 0.01 [𝑟𝑎𝑑𝑖𝑎𝑛𝑠]𝜃𝑠𝑢𝑛

=𝜃𝑠𝑢𝑛 0.57∘

In [6]:

2. Estimating the solar radius of the Sun using the angular diameter

The solar radius is given as

= [𝑟𝑎𝑑𝑖𝑎𝑛𝑠]𝜃𝑠
𝑑
2𝐷

= [𝑟𝑎𝑑𝑖𝑎𝑛𝑠]𝜃𝑠
20

2∗2000

In [7]:

3. Estimating the angle subtended by the Sun using the solar radius

The angle subtended by the sun or are of the sun is given by equation 5

= 𝜋 [𝑠𝑟]Ω𝑠 𝜃2

= 𝜋(𝑡ℎ𝑒𝑡𝑎_𝑠_𝑑𝑒𝑔 [𝑠𝑟]Ω𝑠 )2

= 𝜋(0.29 [𝑠𝑟]Ω𝑠 )2

= 0.26 [𝑠𝑟]Ω𝑠

Out[6]: 'The angular diameter of the Sun = 0.01 [radians] or 0.57 degrees'

Out[7]: 'The solar radius of the Sun = 0.005 [radians] or 0.29 degrees'

d=20
D=2000
theta_sun = d/D
theta_sun_deg = np.rad2deg(theta_sun)
f'The angular diameter of the Sun = {theta_sun} [radians] or {theta_sun_deg:.2} degrees'

d=20
D=2000
theta_s = d/(2*D)
theta_s_deg = np.rad2deg(theta_s)
f'The solar radius of the Sun = {theta_s} [radians] or {theta_s_deg:.2} degrees'
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In [8]:

4. Find ratio of the areas of the beams

In [9]:

2.2.5 Calculate the Brightness Temperature of the Sun

To calculate the brightness temperature of the Sun we now have the Sun’s solid angle Ωs
from Eqn. 5, the beam solid angle ΩA from Eqn. 6, and the antenna temperature
measured from the Sun TA, from Eqn. 11.

However, we need to correct the antenna temeperature to reflect the area ratio calculated
above

In [10]:

This does not allow for the efficiency of the dish. Experiments indicate that a reasonable
value for ǫm for a DSTV dish at 12 GHz is about 0.75. For mesh surface satellite dishes
working at 3.8 GHz, a lower value is more likely as the surface shape is less accurate,
and ǫm is about 0.5. For a mesh dish with a 1.4GHz can feed, ǫm is about 0.5. These
values are based on measurements with domestic satellite dishes. Correcting for this, the
Sun's brightness temperature is about

In [11]:

Estimate the uncertainty in your result in the usual way, by propagating estimates of the
error in each of your measurements. Assume an uncertainty in  of 10%.𝜖𝑚

Out[8]: 'The angle subtended by the Sun = 0.26 sr'

Out[9]: ' and so put simply we could fit 51 Suns into the beam of the dis
h.'

Out[10]: 'Hence the temperature of the sun is about 10353 K'

Out[11]: 'So the brightness temperature of the sun can be estimated as 1380
4 Kelvins at 12 GHz'

omega_s_deg = math.pi*(theta_s_deg)**2

f'The angle subtended by the Sun = {omega_s_deg:.2} sr'

area_ratios = int(omega_a_deg/omega_s_deg)

f' and so put simply we could fit {area_ratios} Suns into the beam of the dish.'

TAsun_corrected=area_ratios*TAsun
f'Hence the temperature of the sun is about {TAsun_corrected} K'

Tb=int(TAsun_corrected/0.75)
f'So the brightness temperature of the sun can be estimated as {Tb} Kelvins at 12 GHz'
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This temperature will vary during the 11 year solar cycle, but it reasonably matches the
value given in standard references for this observing wavelength. However, the T  is
about three times higher than the value of 5800 K measured at visible wavelengths.

How does your result for the Sun’s brightness temperature compare to the temperature
usually quoted for the Sun’s photosphere (light emitting surface)? What do you think this
implies?

In essence, we cannot treat the Sun as a perfect blackbody radiator – some other
mechanism must be increasing the emission from the Sun at radio wavelengths. What
could this be?

𝐵


