Radiometer Equation

Dr Tom Scragg 20241106 DARA HartRAO

Integration Time Calculation

- The observing time required to achieve a specific Signal to Noise ratio can be calculated using the radiometer equation (Dicke 1946).
- Ignoring the effects of Radio Frequency Interference (RFI) on the noise floor (Tsys).

$$T_{int} = \left(\frac{T_{sys}(S/N)}{GS_{psr}\sqrt{n_{pol}B_w}}\right)^2$$

•

Key Parameters for an observation

$$T_{int} = \left(\frac{T_{sys}(S/N)}{GS_{psr}\sqrt{n_{pol}B_w}}\right)^2$$

Target:

• S_{psr}: Strength of the radio signal from the target in Janskys (Watts per m² per Hz)

Telescope:

- T_{sys}: System temperature, a measure of the background noise level of the telescope in degrees Kelvin (K)
- Gain: proportional to the size (collecting area) of the telescope dish and the performance of the amplifier (K per Jansky)
- n_{pol}: Number of polarisations observed (generally 2)
- B_w: Bandwidth of the receiver in MHz

Variable parameters:

- T_{int}: Integration time or duration of the observation in seconds
- S/N: Signal to Noise ratio, how much of a signal do we need for a detection?

Key Parameters for a pulsar observation

Pulsar Target:

- S_{psr} : Strength of the radio signal from the pulsar in Janskys (Watts per m^2 per Hz)
- P: Pulse Period in seconds
- W: Pulse width in seconds

Telescope:

- T_{sys} : System temperature, a measure of the background noise level of the telescope in degrees Kelvin (K)
- Gain: proportional to the size (collecting area) of the telescope dish and the performance of the amplifier (K per Jansky)
- n_{pol}: Number of polarisations observed (generally 2)
- B_w: Bandwidth of the receiver in MHz

Variable parameters:

- T_{int} : Integration time or duration of the observation in seconds
- S/N: Signal to Noise ratio, how much of a signal do we need for a detection?

Integration Time Calculation

- The observing time required to achieve a specific Signal to Noise ratio can be calculated using the radiometer equation (Dicke 1946).
- As we do not receive radio emissions for the whole of the pulsar period a duty cycle correction, V(W/(P-W)), is used to adapt the basic radiometer equation for pulsar observations
- Ignoring the effects of Radio Frequency Interference (RFI) on the noise floor (Tsys).

$$T_{int} = \left(\frac{T_{sys}(S/N)}{GS_{psr}\sqrt{n_{pol}B_w}}\sqrt{\frac{W}{P-W}}\right)^2$$